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INTRODUCTION

The study and analysis of sediment transport 
at ports and coastal areas is an important issue in 
harbor engineering and marine structures; these 
studies focus on finding solutions to environ-
mental problems such as erosion and deposition 
in navigational channels or near ocean shores. In 
particular, there are many problems with coastal 
structures such as piles, piers, and breakwaters 
that are of practical and economic importance, es-
pecially in the field of harbor engineering and ma-
rine structures. Excessive erosion near offshore 
facilities can affect the stability and durability of 
“hydraulic structures” like ports and breakwaters, 
potentially leading to their collapse (M. A. Afshar 
2010, K. Babaeyan et al., 2002; H. Bihs, and N. 
Olsen 2011); on the other hand, increased sedi-
mentation near port berths affects ship draft.

Sediment transport is critical to understand-
ing how sediments are transported and deposited 
back at other sites. Erosion involves removing and 
transporting sediments (primarily from a bound-
ary) and then depositing them at other boundaries. 

Erosion and sedimentation in marine channels 
and near coastal structures is a very complex mat-
ter, as in addition to the well-known influences on 
rivers, such as the critical velocity of flow and the 
state of the river bed and its boundaries, there are 
other influences in coastal areas that have a great 
impact on the erosion of deposition, namely tides, 
currents, and waves.

Wave activity is the primary factor in trans-
porting coastal sediments, especially in shallow 
areas (see wind waves), followed by tides and 
shore currents. The waves generated by the wind 
play a major role in transferring energy from the 
open ocean to the coasts. Usually, during events 
of large waves, sediment is carted off the seaside 
look and docks offshore to form a shallow. Since 
the effective ripple occurrence disappears, the 
deposits gradually return to shore (Dean et al., 
2002). Similarly, the biological procedures that 
alter the morphology of the coastlines, and the 
sediment size distribution is other critical factors 
for changing the state of those coastlines. Human 
influences and industrial works, in addition to 
the interactions between physical processes and 
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coastal landforms, play a role in the modification 
of these landforms.

In order to assist decision-makers and man-
agement, a type of model has been designed for 
forecasting the amounts of residue transported 
and the amount of change occurring in the coastal 
areas, in addition to giving a clear picture of the 
areas of sedimentation or erosion. 

The water of the study area (the estuary of 
Khour Al Zubair) can be described as a lake en-
vironment called a negative estuary, and salinity 
reaches high levels in the summer months (Al-Ra-
madhan B.M. 1984). In 1983, an unnatural canal 
(Shatt Al-Basrah Canal) was established. MOD 
(the main downstream drain) was related to this 
channel at 10 kilometres from the top of the canal 
in 1993; this connection caused an increased in 
the flow rates which ranged from 100 to 200 m3/
sec. Stormwater was drained from Nasiriyah city 
to the main downstream drain with a discharge 
of 60 m3/sec. The environment in Shatt Al-Basrah 
and that of the MOD has become highly saline, 
with salinity reaching a high level, especially in 
the summer months. 

At the lower strategy of the Khor Al-Zubair 
waterway, the massive wave forms a perfect geo-
metrical crest. For both floods as well as ebb, the 
seawater profile was nearly vertical position uni-
form, with a slight class division continuing to in-
crease toward the lagoon’s head (Mahdi A. 1990). 
Multiple research studies have concentrated on 
the region under investigation, but a new two-di-
mensional statistical model is built with the Mike 
21 numerical modelling system to investigate 
how a possible rise in the sea level might affect 
the hydrodynamic characteristics of the region 
(Lafta A. 2019). The port of “Khor Al-Zubair” is 
located on the “Shatt Al-Basrah Canal” and has 
economic importance, so formula was derived to 
calculate the sediment transport rate, which was 
based on local boundaries and hydraulic condi-
tions using the dimensional analysis technique. 
The total suspended sediment discharge is equal 
to 1288285.464 tons/year using the proposed for-
mula, while using modelling (1220500.64) tons/
year (Dakheel A. 2022).

Artificial neural network applications have 
gained wide popularity for predicting sediment 
transport load and other subjects due to their mas-
sive functional properties and their long-term pre-
dictability, which possess enormous advantages 
over traditional analysis methods (Van Maanen et 

al., 2010; Heng 2013; Ebtehaj I. 2013; Duncan W. 
2013; Ebtehaj I. et al., 2021).

The main goal of this analysis is to indicate 
the balanced deposition centration in “Khour Al-
Zubair port” operating a multilayer perceptron 
neural network (MLP) based on hydraulic and lo-
cal boundary parameters and to investigate the ef-
fect of these parameters on predicting suspended 
sediment load concentration.

STUDY AREA AND DATA 
FIELD MEASUREMENTS 

The “port of Khour Al-Zubair” is located 60 
kilometres south of the city centre of Basrah, and 
it is also located 105 kilometres from the northern 
tip of the “Arabian Gulf”. This port lies within 
the “coordinates Margin” (“30° 11’ 36’’ N”) and 
Longitude (“47° 52’ 58” E”). There was a marine 
canal in Khour Al Zubair that aimed to connect 
the “Khour Al Zubair Canal” with the Khour 
Abdullah Canal that leads to the Gulf (Fig. 1). 
The port has two specialized types of reinforced 
concrete wharves and iron tubular piles intended 
for the steel plant. There are two similar adjacent 
wharves with two 15-ton cranes intended for the 
import of iron ore, and there are also five special-
ized wharves at each. 

“Khour Al-Zubair port” is discovered within 
the “Khour AL-Zubair” estuary; a bay consists 
of a contained portion of moisture linked to the 
empty sea. The estuarine system includes a flat 
or water basin and marginal areas around the 
edge that have been inundated by tidal and storm 
events. Many different factors interact to shape 
the estuary’s unique characteristics (Shaw and 
Andrew 2005). The lower boundary can be found 
close to Umm Qasr port, and the upper bound-
ary can be found close to Khour al-Zubair port. 
This estuary is 40 kilometres long and is divided 
into a number of smaller channels that take on a 
distinctive shape, much like the branches of a tree 
(see Figure 1). After a flood, the Khour Al-Zubair 
canal can expand to a width of between one and 
two kilometres. Ten to twenty meters of water 
depth is typical. During the ebb and flow of the 
tides, which occur roughly every 12 hours, there 
are strong currents and the average tide height is 
about 3.2 meters (Al-Ramadhan 1988).

It had several days or weeks to select the eval-
uation channels required for the study and gain 
the necessary safety authorizations to perform 
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measurement techniques, so researchers did not 
start making the trip to the survey area until Sep-
tember 8, 2020 (Dakheel A. 2022). Six transect 
sections are studied in the field; three are chosen 
in the immediate future (Oct. 23, 2020–Oct. 25, 
2020) and are located at the same sites as those 
studied for hydraulic properties in the spring 
(Nov. 30, 2020–Dec. 4, 2020). There are three 
distinct parts to this area: the first is in front of the 
Khour Al-Zubair port at (30° 11’ 27.84” N, 47° 
53’ 30.45” E), although the other difference is to 
the north and south of the dock at (30° 13’ 5.73” 
N, 47° 51’ 54.78” E, and (30° 10’ 31.48” N, 47° 
53’ 51.73” E), respectively. 

ADCP (Acoustic Doppler Current Profiler) 
technology is applied for measuring the hydrau-
lic properties of a canal section relating to flow 
velocity, discharge, cross-sectional area, highest 
width, and moisture level over double periods 
(neap and spring) with an hourly log over a full 

tide cycle (Dakheel A. et al. 2022). “ADCP” is 
carried on a movable ship along a cross-section of 
the canal using “WinRiver II software”, “ADCP” 
can calculate real-time discharge while travelling 
the streamlet and continuously measuring mois-
ture velocity, boat speed, and water depth. Table 
1 shows the average measurements of hydraulic 
properties in the neap and spring periods. The 
negative sign means that the discharge during the 
flood period is greater than during the ebb period 
based on the fieldwork measurements, so it has 
the opposite direction. 

The concentration of suspended sediment 
usually changes during each tidal period. The 
concentrations in marine and river environments 
are much lower than those in estuaries (Doeke, 
1993). For measuring the suspended sediment 
concentrations in the transect sections for the 
neap and spring periods, vertical sampling was 
selected at 0.25, 0.5, and 0.75 of the width of 

Figure 1. Dock of the study area (Lafta et al., 2015)

Table 1. Hydraulic properties of complete tidal cycle (Dakheel A. 2022)

Section Period Average top width 
(m)

Average velocity  
(m/sec)

Average total area 
(m2)

Average total discharge 
(m3/sec)

Port center Neap 869.56 0.532 7051.45 -98.245

Port South Neap 947.73 0.595 6855.03 575.928

Port North Neap 558.74 0.427 2461.45 136.141

Port center Spring 915.08 0.475 7477.87 386.244

Port South Spring 980.99 0.554 7125.43 -820.615

Port North Spring 614.37 0.435 2483.96 -280.801
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streamflow at each transect. At each vertical sta-
tion, 3 samples were taken every 2 hours along 
the tidal period at bottom of 0.2 d, 0.6 d, and 
0.8 d, where stands the measured deep from the 
moisture surface, as illustrated in Figure 2. Table 
2 illustrates the average measurements of sus-
pended sediment concentration (SSC) in the neap 
and spring periods.

According to Dakheel A. 2022, the sample is 
lifted from each station by using a point-integrat-
ing sampler, which was designed to collect the 
samples at specific points. The discontinued load 
attention is defined in the laboratory. The cross-
section 9 samples at 2 hours were wrapped in a 
black-coloured cover until it reaches the labora-
tory in order to preserve the sample’s quality. It 
uses a glass filtration system with a vacuum to 
filter samples. The concentration of broken sedi-
ment is estimated utilising the following equation 
(Dakheel and Al-Aboodi. 2022):

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑚𝑚𝑚𝑚
𝑣𝑣𝑣𝑣

 

 

𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘 + 1) = 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘) − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝐽𝐽𝐽𝐽𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘) 

𝜂𝜂𝜂𝜂𝐽𝐽𝐽𝐽𝑖𝑖𝑖𝑖 =
𝜕𝜕𝜕𝜕𝐽𝐽𝐽𝐽
𝜕𝜕𝜕𝜕𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖
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2
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𝐽𝐽𝐽𝐽 → 𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑅𝑅−1𝑃𝑃𝑃𝑃 
 

(1)

where: ssc – concentration of suspended sediment 
load (kg/m3, mg/l, or PPM);    
m – mass of the sediment load (mg);   
v – water volume (L).

MULTILAYER PERCEPTRON 
NEURAL NETWORK

A “multilayer perceptron (MLP)” is a totally 
related variety of “artificial neural networks” 
(ANN). The term “MLP” stands for ambiguity or is 
loosely expressed to suggest any forward-oriented 
ANN, occasionally to refer precisely to webs made 
up of numerous layers of perception. MLP consists 
of three layers of nodes, as illustrated in Figure 3; 
the layers are sequenced from left to right as an 
input layer, a hidden layer, and an output layer. 
These nodes are neurons that use a “non-linear ac-
tivation function” except for the input nodes. The 
backpropagation algorithm is used as a supervised 
learning method for training in MLP. 

Figure 2. Suspended sediment sampling columns (Dakheel A. 2022)

Figure 3. Architecture of an MLP with one secret layer

Table 2. Suspended sediment concentration (SSC) of 
complete tidal cycle

Section name Period SSC (mg/l)

Port center Neap 307.04

Port South Neap 290.17

Port North Neap 130.49

Port center Spring 81.47

Port South Spring 150.89

Port North Spring 122.68
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A scalar weight (w) is used for weighting the 
connection between processing elements (PEs). 
During the process of training, the scalar weight 
is adopted. Through the training process, the 
connection importance is modified to decrease 
the squared contrast between the expected result 
and the PE reply. The “optimal weights” (wopt) 
are produced from the cross-correlation vector 
(P) and the inverse input autocorrelation matrix 
(R–1). It can be said that the “analytical solu-
tion” in this method is identical to the examina-
tion process used to discover the lowest cover 
“quadratic performance”, J (wi), operating angle 
descent by changing the importance at per epoch 
(Ivakhnenko 1971). 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑚𝑚𝑚𝑚
𝑣𝑣𝑣𝑣
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(2)

where: η – coefficient of understanding velocity; 
∇Ji(k) – gradient vector of the implemen-
tation cover for the ith information node 
at iteration k.

Equation 3 is utilised for obtaining the imple-
mentation surface (J):
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(3)

where: dp – target vector;  
yp – output of the pth output neuron.

METHODOLOGY

A multilayer perceptron neural network is ap-
plied for predicting the “suspended sediment con-
centration” in “Khour Al-Zubair port”. Five input 
hydraulic and local boundary parameters (chan-
nel width, water depth, discharge, cross-section 
area, and flow velocity) are used for predicting 

the SSC. Different input hydraulic and local 
boundary parameter combinations in the three 
sections (port centre, port south, and port north) 
were used for creating nine models. A different 
set of inputs was used to study their effect on the 
models’ outputs. The use of both hydraulic and 
local boundary parameters to estimate the SSC is 
very important in the port area in order to infer 
these quantities without the need for field mea-
surements, which require effort and a long time. 
Also, through the outputs of the models, the most 
important parameters will be revealed, as well 
as the need for studies of new parameters. The 
combinations of input parameters and the applied 
model numbers are illustrated in Table 3. The net-
work will be built using 20 neurons for hidden 
layer; network size evaluation was performed us-
ing 5-fold cross-validation.

The variables that are sent in can be split up 
into two distinct groups (training and testing). 
During the training phase of development, the 
framework of artificially intelligent model systems 
is put into place. “Testing data” that was not oper-
ated in the training process is applied to trained 
standards in order to evaluate the precision of the 
model’s predictions. Certain proportions of events 
are applied during the training and testing process. 
Because of this, when different proportions of in-
put data are used, different results and conclusions 
are presented (Ming and Gwo 2015). In order to 
find a solution to this issue, the authors of this pa-
per made use of cross-validation. In this process, 
the performance of an artificial neural model is 
evaluated via cross-validation. This is done by se-
lecting a group of rows for a per fold that is then 
randomly checked on the target variable “SSC.” 
The network size was determined through the use 
of a 5-fold cross-validation procedure.

All models use a maximum of three layers 
of the MLP algorithm (an input layer; one hid-
den layer and an “output layer”). The range of 
weights is standardized with the help of the input 

Table 3. Multilayer perceptron neural network models with input parameters combinations
Model No. Section name Input parameters Model No. Section name Input parameters

1 Port center All parameters 6 Port North Discharge, cross section 
area, and flow velocity

2 Port South All parameters 7 Port center Flow velocity

3 Port North All parameters 8 Port South Flow velocity

4 Port center Discharge, cross section 
area, and flow velocity 9 Port North Flow velocity

5 Port South Discharge, cross section 
area, and flow velocity
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neurons, and the oracle variable can take on mat-
ters ranging from -1 to 1. The hidden layer neu-
rons receive the predictor variables, which are 
then used to train the model. The weight is then 
multiplied by the bias constant before it is fed to 
the output layer (Fig. 3). By specifying a maxi-
mum and a minimum value for a lot of neurons 
in the hidden layer, it is possible to obtain an op-
timal lot of neurons in the layer automatically. 
Through the use of Model 2, one can get an idea 
of what the ideal number of neurons is by observ-
ing the data in Table 4. This procedure is carried 
out by first generating a large number of models, 
each of which has a different total lot of neurons 
in the invisible layer, and then using a cross-val-
idation training procedure to evaluate how well 
each model performed.

The scaled conjugate gradient algorithm 
is used in the process of updating the values of 
weight; this method is carried out by errors propa-
gating backwards through the network. Logistic 
and linear activation functions, respectively, are 
the types that are utilized by the hidden and out-
put activation processes. The effectiveness of 
MLP models during the training and testing phas-
es is assessed using RMSE (“Root Mean Squared 
Error”), MSE (“Mean Squared Error”), MAE 
(“Mean Absolute Error”), and MAPE (“Mean Ab-
solute Percent Error”) (“Mean Absolute Percent-
age Error”). Table 5 contains a presentation of all 
the models’ additional convergence parameters.

RESULTS AND DISCUSSION 

The optimum solution number of neurons 
required for each hidden neuron is based on the 

remaining variables (per cent). As illustrated in 
Table 6, an increase in the number of predictors 
does not necessarily indicate a rise in the number 
of neurons. Table 6 illustrates the optimal size of 
neurons for all models. In general, it is noted that 
the minimum optimal number of neurons is not 
less than 4 in these models. Also, the decrease in 
the residual variance % is not observed with the 
increase in the number of predictors. This can be 
attributed to the complexity of the problem and 
the fact that some predictors do not affect the ef-
ficiency of the model. There is another effect on 
the efficiency of the models, as some parameters 
were entered as of one value for one section with 
different values of sediment concentration, for ex-
ample, the top width of the water section, total 
discharge, and total section area. 

As shown in Table 7, the implementation of 
the MLP standard in both activity and valida-
tion steps are estimated based on RMSE, MSE, 
MAE, and MAPE. It is noticed from this table 
that the values of the statistical parameters vary 
between the models and that each section has 

Table 4. Optimum number of neurons in hidden layer of Model 2
No. of neurons Residual variance % No. of neurons Residual variance %

2 82.52848 8 82.35286

3 86.92666 9 91.84951

4 87.99339 10 84.52846

5 87.24114 11 84.35436

6 85.34697 12 (Optimal size) 80.44416

7 86.34201 13 88.25472

Table 5. Convergence Parameters of All Models
No. convergence tries 4.00 Iterations without improvement 100.00

Maximum iterations 10000 “Convergence tolerance” 1.000e-0050

Minimum improvement delta 1.000e-0060 Minimum gradient 1.000e-0060

Table 6. Neurons optimal size of MLP models using 
5-fold cross-validation

Model No. Optimal size of 
neurons

Residual variance 
%

1 20 46.53653

2 12 80.44416

3 7 81.01759

4 5 47.43312

5 20 82.61717

6 4 88.60143

7 8 72.11570

8 3 95.37982

9 4 92.25550
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characteristics that distinguish it from the rest of 
the sections. It is noted, for example, that in the 
port centre section, which includes the models 
(one, four and seven) (see Table 3), as it is shown 
by raising the number of predictors, the efficiency 
of the model increases and the difference between 
the calculated and target value decreases, this rule 
applies to all models except for a few exceptions. 
Through the statistical parameter (MAPE), the ef-
ficiency of the first model exceeded the efficiency 

of the fourth and seventh models by a percentage 
of 12.3% and 46.2%, respectively. It can be said 
that increasing the number of predictors for the 
study area models increases the efficiency of the 
model in estimating the sediment concentration. 

It is also possible to take advantage of the corre-
lation coefficient (R) to get an idea of the success or 
failure of these models in estimating the quantities 
of sediments in the study area. Table 8 shows the 
correlation coefficients for the verification phase.

Table 7. MLP model performance according to statistical criteria
Model No. RMSE MSE MAE MAPE

1
Training 139.29477 19403.034 78.708577 87.550493

Validation 170.95821 29226.709 106.40193 130.05348

2
Training 203.8026 41535.498 129.40182 146.63426

Validation 218.52088 47751.373 142.33581 153.48398

3
Training 91.665479 8402.5601 61.555574 97.952268

Validation 100.31801 10063.704 69.654617 105.36607

4
Training 160.39948 25727.993 99.346362 123.97206

Validation 175.47223 30790.504 112.04109 146.5501

5
Training 209.46557 43875.824 137.71994 153.02719

Validation 220.64682 48685.02 147.05861 160.43119

6
Training 96.810355 9372.2448 70.124647 110.73461

Validation 99.136378 9828.0215 70.987657 113.61726

7
Training 191.52843 36683.14 130.93314 184.9363

Validation 202.41114 40970.269 137.44898 190.6708

8
Training 236.49263 55928.766 167.9922 211.44588

Validation 237.79384 56545.909 165.53158 202.07378

9
Training 97.496468 9505.5613 72.568871 126.86463

Validation 99.529394 9906.1004 73.519496 123.96396

Table 8. The correlation coefficients for validation phase
Model no. R Model No. R Model no. R

1 0.882 4 0.656 7 0.497

2 0.762 5 0.623 8 0.278

3 0.680 6 0.575 9 0.266

Figure 4. Comparative plot of measuring SSC versus estimating SSC by model no. 1
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Figure 5. Comparative plot of measuring SSC versus estimating SSC by model no. 2

Figure 6. Comparative plot of measuring SSC versus estimating SSC by model no. 3

Figure 7. Comparative plot of measuring SSC versus estimating SSC by model no. 4

Figure 8. Comparative plot of measuring SSC versus estimating SSC by model no. 5
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Figure 9. Comparative plot of measuring SSC versus estimating SSC by model no. 6

Figure 10. Comparative plot of measuring SSC versus estimating SSC by model no. 7

Figure 11. Comparative plot of measuring SSC versus estimating SSC by model no. 8

Figure 12. Comparative plot of measuring SSC versus estimating SSC by model no. 9
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The correlation weight between the calcu-
lated and measured “sediment concentration” 
values of MLP models can be observed from 
Table 8, where it appears that the models (one, 
two, and three) have a relatively high correlation 
value compared to the rest of the models, as it 
is inferred that increasing the number of predic-
tors aims to improve the efficiency of the model. 
While the models (four, five, and six) had rela-
tively moderate correlation values due to the de-
crease in the number of predictors, for the models 
(seven, eight, and nine), the correlation values   
were reduced as only the flow velocity was used 
to estimate the sediment concentration, where it 
can be concluded that using the value of the flow 
velocity alone is not preferred in estimating the 
sediment concentration in the study area. 

The efficiency of the models may be en-
hanced by introducing other variables involved in 
the estimation process, such as water levels, spe-
cific gravity, and grain size analysis of bed mate-
rials. The comparative plots of the training and 
validation phases for measuring SSC values and 
estimating values by the MLP model are shown 
in Figs. 4 to 12. 

CONCLUSIONS 

A MLP neural network is applied for predict-
ing the SSC in Khour Al-Zubair port. Five inputs, 
including hydraulic and local boundary parame-
ters (channel width, water depth, discharge, cross 
section-area, and flow velocity), are used for pre-
dicting the SSC. The increasing number of predic-
tors increased the efficiency of the model and de-
creased the contrast between the calculated weight 
and the mark weight. It became clear through 
modelling that the models with five predictors 
outperformed the rest of the models. The models 
with three input variables had relatively moderate 
correlation coefficients, but as for the models with 
one input variable (flow velocity), the correlation 
values were reduced, and it can be concluded that 
using the value of the flow velocity alone is not 
preferred in estimating the SSC in the study area. 
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